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Abstract

We study the e¤ects of institutional constraints on stability and e¢ ciency in
the �one-way �ow�model of network formation. In this model the information
that �ows through a link between two players runs only towards the player that
initiates and supports the link, so in order for it to �ow in both directions both
players must pay whatever the unit cost of a directional link is. We assume that
an exogenous �societal cover� consisting of a collection of possibly overlapping
subsets covering the set of players speci�es the social organization in di¤erent
groups or �societies�, so that a player may initiate links only with players that
belong to at least one society that he/she also belongs to, thus restricting the
feasible strategies and networks. In this setting, we examine the impact of such
societal constraints on stable/e¢ cient architectures and on dynamics.
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1 Introduction

In a seminal paper Bala and Goyal (2000) provide two benchmark non cooperative
models of network formation. In both models links are formed unilaterally and the
network allows information or other bene�ts to �ow through it. In the �one-way �ow�
model the information �ows through a link between two players only in the direction
of the player that initiates and supports the link, so in order for it to �ow in both
directions both players must pay whatever the unit cost of a directional link is. In the
�two-way �ow�model the information �ows through a link between two players in both
directions irrespective of who pays for it1. In both settings, Bala and Goyal study Nash
and strict Nash stability and provide a dynamic model, �rst assuming that information
�ows without friction and then dropping this assumption. In both models the current
network is assumed to be common knowledge to all players, who may unrestrictedly
initiate links with any other players. These authors show that, when no friction exists,
stability in the sense of Nash equilibrium is equivalent to minimal connectedness in
either model, while in the stronger sense of strict Nash stability �wheels�are the only
stable architectures in the one-way �ow model and �center-sponsored stars� are the
only stable architectures in the two-way �ow model.
These benchmark models have been extended since then in di¤erent directions2. In

Olaizola and Valenciano (2011) we argue that: �Due to what is generically referred to
here as �institutional constraints� (social, cultural, linguistic, geographical, economic,
etc.), individuals may often see only �part of the world�and initiate links only within
that part or a part of that part. Thus, it seems more realistic to assume that a set of
possibly overlapping groups (family, tribe, clan, club, gender, age, linguistic commu-
nity, nationality, professional association, department, etc., depending on the context)
con�gures the social constraints within which individuals interact. More precisely, we
assume that each individual may initiate links only within the groups he/she belongs
to.� In that paper we address the same issues as Bala and Goyal (2000), but assume
some institutional or social constraints, namely a �societal cover�consisting of a col-
lection of groups of players called �societies� that covers the whole set of players is
exogenously given and it is assumed that each individual can only establish links with
players with whom he/she shares membership of at least one society3. In Olaizola and
Valenciano (2011) this study is conducted for the two-way �ow model only. In the ab-
sence of decay, the strict Nash stable architectures are characterized and proved to exist
for any societal cover and to be highly hierarchical in their organization: they form

1A third benchmark model is Jackson and Wolinsky�s (1996), where the formation of a link between
two players requires the agreement of both.

2There is a growing body of literature on these extensions that we decline to summarize here. Some
recent books surveying part of this literature are Goyal (2007), Jackson (2008) and Vega-Redondo
(2007). See also Jackson�s (2010) survey.

3In Olaizola and Valenciano (2011) it is proved that the societal cover model provides the most
general symmetric link-formation constraint that can be considered, i.e., any such constraint can be
interpreted as associated with a societal cover.
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oriented trees, perhaps �grafted�, that collapse into Bala and Goyal�s center-sponsored
stars when the societal cover consists of a single society. Bala and Goyal�s dynamic
model is also applied to this extension and proved to converge at least in payo¤s.
In this paper we address a similar study of link formation under institutional con-

straints for the one-way �ow model, establishing some positive and negative results.
We �rst prove equivalence between Nash stability and minimal connectedness. We
then characterize strict Nash networks consistent with a societal cover as minimally
connected networks formed by interconnected wheels where these interconnections sat-
isfy a qualifying condition. This characterization is used to establish some features of
strict Nash networks and, more importantly, to establish their possible non existence.
Nevertheless, we prove their existence for some simple types of societal cover. Finally,
we study Bala and Goyal�s dynamics for the one-way �ow model in this setting. Here
we also have negative results, showing the possibility of non convergence even in pay-
o¤s. Nevertheless, we prove convergence for the types of societal cover for which we
have proved the existence of strict Nash networks.
The paper closest to this one is Galeotti (2006), where equilibrium in the one-

way �ow model is studied in the presence of heterogeneity in costs and bene�ts4.
Nevertheless, although our societal cover means a form of heterogeneity, Galeotti�s
model does not include, and is not included in, the one we study here. But, as is
shown later, both models can be seen as particular cases of a general model with
heterogeneity about which no result has been obtained as far as we know.
The rest of the paper is organized as follows. In Section 2, the basic model is

speci�ed and the necessary notation and terminology are given. Section 3 studies
stability and e¢ ciency under institutional constraints. In Section 4, Bala and Goyal�s
dynamic model is applied to this setting. Finally, Section 5 summarizes the main
conclusions.

2 The model: one-way �ow under constraints

We describe formally the ingredients of the model by recalling some de�nitions from
Bala and Goyal (2000) and Olaizola and Valenciano (2011).
Let N = f1; 2; ::; ng denote the set of nodes or players. Each player may choose

other players with whom to initiate and support links. By gij 2 f0; 1g we denote the
existence (gij = 1) or not (gij = 0) of a link connecting i and j initiated by i, and when

such a link exists we refer to it as �link
 
ij�. Vector gi = (gij)j2Nni 2 f0; 1gNni speci�es5

the set of links supported by i and is referred to as an (unrestricted) strategy of player i.
Gi := f0; 1gNni denotes the set of i�s (unrestricted) strategies andGN = G1�G2�::�Gn
the set of (unrestricted) strategy pro�les. An unrestricted strategy pro�le g 2 GN

4Other papers dealing with heterogeneity in the one-way �ow model are Billand et al. (2008),
Derks and Tennekes (2009), and Derks et al. (2009).

5We always drop the brackets �f::g�in expressions such as Nnfig:
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univocally determines a directed N -network (N;�g), where

�g := f(i; j) 2 N �N : gij = 1g;

which we identify with g and refer to as network g. If M � N we denote by g jM the
M-network (M;�gjM ) with

�gjM := f(i; j) 2M �M : gij = 1g;

which we refer to as the M -subnetwork of g. As N is usually clear from the context,
we generally write just �network�instead �N -network�.
We assume that an exogenous �societal cover�consisting of a set of possibly over-

lapping �societies�imposes a social constraint: each player in N can initiate links only
with players with whom he/she shares membership of at least one society. Formally,
we have the following

De�nition 1 (Olaizola and Valenciano, 2011) A �societal cover�of N is a collection
of subsets of N (called �societies�), K � 2N , such that: (i)

S
A2K

A = N; and (ii) for all

A;B 2 K (A 6= B), A * B:

Thus, every player belongs to at least one society and no society contains any other.
We denote by Ki � K the a¢ liation of player i or set of societies to which i belongs,

and by N(Ki) � N player i�s reach, i.e., the set of nodes that i may directly access,
that is:

Ki := fA 2 K : i 2 Ag
and

N(Ki) :=
[
A2Ki

A:

A component C of a societal cover K is a subset C � K such that (i) for all A;B 2 C
there exist A1; ::; Ak 2 K s.t. A1 = A and B = Ak, and Ai\Ai+1 6= ? for i = 1; ::; k�1,
and (ii) for all B 2 KnC; B \ ([A2CA) = ?. The subset [A2CA of N covered by a
component C is denoted by N(C). A societal cover is connected if it has a unique
component.
The following de�nition constrains the structure of a network so as to be consistent

with a given societal cover of N .

De�nition 2 (Olaizola and Valenciano, 2011) A network g is consistent with a societal
cover K (or is a K-network) if for every link gij = 1 there exists an A 2 K s.t. i; j 2 A
(i.e., Ki \ Kj 6= ?).

A vector gi = (gij)j2N(Ki)ni 2 f0; 1gN(Ki)ni speci�es a set of K-feasible links initiated
by i and is referred to as a K-admissible strategy of player i. Gi(K) := f0; 1gN(Ki)ni
denotes the set of i�s K-admissible strategies and GK = G1(K) � G2(K) � :: � Gn(K)
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the set of K-admissible strategy pro�les. A K-admissible strategy pro�le g determines
a K-network that is identi�ed with g.
We say that there is a path of length k from j to i in g if there exist k + 1 players

j0; j1; ::; jk, s.t. i = j0, j = jk, and for all l = 1; ::; k, gjl�1jl = 1. When such a path exists
we write j

g! i. Note that the direction of a path is crucial: a path from j to i allows
information or bene�ts to travel from j to i, but not from i to j. The set of players
with whom i supports a link is denoted by Nd(i; g), and the set of players connected
with i by a path (union fig) by N(i; g), and their cardinalities by �di (g) := #Nd(i; g)
and �i(g) := #N(i; g).
A component of a network g is a subnetwork g jC , where C � N , such that for any

two players j; i in C, j
g! i, and no set strictly containing C meets this condition. We

say that g is connected if g is the unique component of g. A component of a network
is minimal if for all i; j s.t. gij = 1, the number of components of g is smaller than
the number of components of g � ij, where g � ij is the network that results from
replacing gij = 1 by gij = 0 in g. A network is minimally connected if it is connected
and minimal.
We denote by g�i the network where all links supported by i in g are deleted, and

by (g�i; g0i) the strategy pro�le and network that results from replacing gi by g0i in g.
It is assumed that each node contains a valuable and particular type of information

and a link gij allows such information to �ow from j to i, without friction or decay, so
that each node i receives the information from all nodes with which it is connected by
a path, i.e., all j such that j

g! i. Let vij > 0 be the payo¤ that player i derives from
connecting directly (by a link) or indirectly (by a path) with player j, and cij > 0 the
cost for player i of initiating a link with j. Thus, the payo¤ of player i in g is

�i(g) =
X

j2N(i;g)

vij �
X

j2Nd(i;g)

cij:

We assume costs and bene�ts to be homogeneous across players (i.e., vij = v and
cij = c; for all i; j)6. We also assume v > c, so that connecting with new nodes (i.e.,
those with which one node is not connected by a path) is always pro�table. In short,
we assume:

�i(g) = v�i(g)� c�di (g) (v > c): (1)

A K-network is e¢ cient if it maximizes the aggregate payo¤ under the constraint
of K-feasible payo¤s, that is, those that can be obtained by means of K-networks.

6In fact, the constraint imposed by a societal cover means a form of heterogeneity that could be
formulated in terms of payo¤s. For this assume that each agent i has a cost

cij

�
= c; if j 2 N(Ki)
=M; otherwise;

where M is a su¢ ciently large number, and vij = v for all j. Note the di¤erence with the other forms
of heterogeneity that, as far as we know, have been considered in the literature.
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3 Stability and e¢ ciency

The following de�nitions are natural extensions of the notions of Nash stability and
strict Nash stability, following Bala and Goyal (2000), for a network in a scenario where
payo¤s are given by (1) and: (i) a societal cover K allows only for links connecting
individuals that have at least one society in common, and (ii) all players in the same
component C of K, i.e., in N(C), have common knowledge of the part of the current
network connecting individuals of N(C). Condition (ii) can be justi�ed by assuming
that information about which is the current network propagates between overlapping
societies7. Note that this scenario yields the unconstrained environment of Bala and
Goyal (2000) for the particular case of the simplest societal cover: K = fNg.

De�nition 3 A Nash K-network is a K-network g that is stable under K-admissible
strategies, that is, for all i 2 N :

�i(g) � �i(g�i; g0i) for all g0i 2 Gi(K): (2)

When (2) holds, we say that gi is a best (admissible) response of i to g�i. The
stability notion can be re�ned in the strict sense:

De�nition 4 A strict Nash K-network is a Nash K-network g such that for all i 2 N :

�i(g) > �i(g�i; g
0
i) for all g0i 2 Gi(K) (g0i 6= gi): (3)

Thus, (3) means that in a strict Nash K-network every player is playing his/her
unique best (admissible) response to those played by the others. Note that forK = fNg
a (strict) Nash K-network is a (strict) Nash network in the standard setting.
Note that the set of players in each component of the societal cover form a separate

world: no link with players in other components is possible and no information about
them reaches them. In particular the following straightforward result follows easily.

Proposition 1 A K-network g is a Nash (strict Nash) K-network if and only if g jN(C)
is a Nash (strict Nash) C-network for each component C of K.

Remark: In view of Proposition 1 and the irrelevance of societies consisting of a
single individual, in what follows our attention is constrained to connected societal
covers where all societies contain at least two individuals.

The following proposition extends Bala and Goyal�s result to this setting.

7As a set, each society can be conceived as a complete network connecting all its members that
allows for a certain level of information to �ow, including the current K-network but not the informa-
tion that �ows through it. There is no con�ict with the interpretation of the model if we assume that
the K-network we consider now, with associated costs and bene�ts, allows for the �ow of a particular
type of information that cannot �ow through such basic underlying complete societal network.
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Proposition 2 Given a connected societal cover K of N , a K-network g is a Nash
K-network if and only if it is minimally connected.

Proof. Necessity ()): Let K be a connected societal cover of N , and g a K-network.
Assume g is not connected. Then there exist two nodes i; j 2 N such that there is
no path from j to i in g (j

g9 i). As cover K is connected, a �nite sequence of nodes
i1; ::; im exists, such that i1 = i, im = j and for each k = 1; ::;m� 1, there is an A 2 K
s.t. ik; ik+1 2 A. Then for at least two consecutive nodes among these m nodes, say ik
and ik+1, there is no path in g from ik+1 to ik. But then it is feasible and pro�table for
node ik+1 to initiate a link with ik. Thus g must be connected. If g were not minimal
there would be some super�uous link that could be eliminated and that would bene�t
the player that eliminated it, and consequently g would not be a Nash K-network.
Su¢ ciency ((): Reciprocally, assume that g is minimally connected. Let i be any

player and g0i be any strategy g
0
i 2 Gi(K) (g0i 6= gi). We show that �i(g) � �i(g�i; g0i).

If node i does not support any link then g is not minimally connected. If i supports
only one link then �i(g) � �i(g�i; g0i) for all g0i 2 Gi(K). Then assume that i supports
at least two links. A new strategy g0i 6= gi means deleting some links and initiating
new ones. If the number of links initiated is greater than or equal to the number of
deleted ones, i�s payo¤ cannot increase. Assume then that i deletes a number of links
and replaces them by a strictly lower number of links. As g is minimally connected,
each deleted link was necessary to connect i with at least one node. Then at least for

one of the new links, say
 
ij, j must be connected by a path with two of the nodes, say

k and k0, that have been disconnected from i due to i�s deletion of links, otherwise the
payo¤ of i would decrease in g0. As g is minimally connected there exist paths j

g! i,

k
g! j and k0

g! j. If j
g! i contains the link

 
ik, then

 
ik0 was super�uous for i in g.

Similarly, if j
g! i contains the link

 
ik0, then

 
ik was super�uous for i in g. Finally, if

j
g! i contains neither

 
ik nor

 
ik0, then both were super�uous for i in g. Thus in all

three cases g could not be minimally connected.

Remark: Minimal connectedness is a necessary condition for e¢ ciency, but, by con-
trast with the two-way �ow model of Bala and Goyal (2000) and its extension in
Olaizola and Valenciano (2011), in the one-way �ow model a K-network may be min-
imally connected but not e¢ cient. In Figure 1 two minimally connected K-networks
are represented8: (a) is an e¢ cient Nash K-network, while (b) is a Nash K-network
that is not e¢ cient.

We now concentrate on strict Nash K-networks. Bala and Goyal (2000) prove that
in their single-society setting wheels are the only strict Nash architectures. In their
setting a wheel is a sequence of players that includes all and where each player supports
a (unique) link with the next one in the sequence and the last one with the �rst, or,

8As in all �gures, nodes are represented by dots (without labels unless convenient), and links by
arrows between them with the convention that the node at the tip of the arrow supports it.
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Figure 1: E¢ cient and non-e¢ cient Nash K-networks

equivalently, a minimally connected network where each player supports exactly one
link. In the context of K-networks a wheel in the sense of Bala and Goyal may not
even be feasible for certain covers, but, as we show below, wheels are also important
in connection with strict Nash K-networks. This motivates the following de�nition.

De�nition 5 A set of players M � N (#M � 2) is said to be connected by a wheel
w in a network g if g jM= w and w is a minimally connected M-network where each
player supports exactly one link.

Note that according to this de�nition: (i) a wheel does not necessarily connect all
players in N ; (ii) a node in a wheel can link, or be linked from, other nodes di¤erent
from those in the wheel. When M = N we say that the wheel is all-encompassing.
Re-stated in terms of the current setting, notation and terminology, and adapted

to it, Bala and Goyal (2000) establish the following result: when K = fNg, i.e., the
cover consists of a single society, the only strict Nash K-networks are all-encompassing
wheels9.
As we show below, the societal cover diversi�es the strictly stable networks. A va-

riety of structures of interconnected wheels emerges as possible strict Nash K-networks
depending on the structure of the societal cover; moreover, in general, several archi-
tectures appear as strict Nash for a given societal cover. Our next goal is to identify
and characterize these networks. As a �rst result, we have a characterization that will
allow us to establish some salient features of strict Nash K-networks and prove their
existence or non-existence under certain conditions. Namely, we have the following
characterization: strict Nash K-networks are minimally connected networks consisting
of wheels, which satisfy a qualifying condition that restricts the way in which those
wheels can interconnect.

Theorem 1 A network g is a strict Nash K-network if and only if the following three
conditions hold: (i) g is a minimally connected K-network, (ii) g is formed by wheels,
and (iii) if w(j) denotes a wheel containing j and for any i not contained in w(j) it
holds gij = 1, then for all k s.t. N(k; g � ij) = N , k =2 N(Ki):

9Given their weaker assumptions on payo¤s, the empty network may also be strict Nash in their
setting.
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Proof. Necessity ()): Let g be a strict Nash K-network. Condition (i): By Proposi-
tion 2, g is minimally connected. Condition (ii): Let i be any node. As g is connected,
there is some node j such that i

g! j and j
g! i. Thus there is a cycle, i.e., a sequence

of nodes i1; ::; im such that i1 = im = i and gilil+1 = 1. We can assume that i only
appears at the ends of this sequence (if i appears somewhere else in this sequence just
take a subsequence where this condition holds). Now if no node appears twice in the
cycle, as g is minimally connected, the nodes in the cycle are connected by a wheel in
g (i.e., unless the cycle contains only two nodes, no two nodes in the cycle are mutu-
ally linked) and we are done. Otherwise, delete the subcycles until a wheel is �nally
obtained. Condition (iii): Assume conditions (i) and (ii) hold, but for any i =2 w(j) it
holds gij = 1 and for some k s.t. N(k; g� ij) = N , it is k 2 N(Ki). Then i can replace
the link with j by a link with k and keep his/her payo¤.
Su¢ ciency ((): Let g be a K-network satisfying conditions (i)-(iii). Let i be any

node. By condition (i) i supports at least one link and cannot delete any without loss.
We prove that i cannot replace any link without loss either. Assume gij = 1. Denote
by W (i) the set of wheels containing i in g. If W (j) � W (i), then there is no k 6= i
s.t. gkj = 1 (otherwise j would belong to a wheel to which i would not belong) and
then i could not replace gij by any other link and remain connected with j. Finally, if
W (j) * W (i) then for some wheel containing j, w(j), i =2 w(j), so that condition (iii)
applies and i cannot replace link gij and keep his/her payo¤.
As an immediate consequence the following is obtained.

Corollary 1 Any all-encompassing wheel that is a K-network is a strict Nash K-
network. In particular, when K = fNg the only strict Nash K-networks are all-
encompassing wheels.

Now based on the characterization provided by Theorem 1, we establish some salient
features of the architecture of strict Nash K-networks. The �rst one gives a necessary
condition for the contact and existence of two wheels in strict Nash K-networks: the
existence of �hinge-players�, that is, unique nodes in the intersection of the reaches of
another two.

Proposition 3 In a strict Nash K-network g if a node i is linked by two di¤erent
players j and k, then i is the unique node in the intersection of j�s reach and k�s reach,
that is, N(Kj) \N(Kk) = fig.

Proof. Let i; j; k be three nodes in a strict Nash K-network g s.t. gji = gki = 1.
Assume there is an i0 6= i that is within j�s and k�s reach. As g is minimally connected,
i
g! i0, i.e., there is a path from i to i0. Now if link

 
ji is not on the path i

g! i0, then j

can replace it by
 
ji0 without loss. Similarly, if link

 
ki is not on the path i

g! i0, then k

can replace it by
 
ki0 without loss. Otherwise, assume that both links

 
ji and

 
ki are on
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the path i
g! i0. Without loss of generality assume that link

 
ji goes �rst on that path,

then j can replace
 
ji by

 
ji0 without loss.

As a corollary, there are two conclusions: a su¢ cient condition under which the
only possible architecture of a strict Nash K-network is the all-encompassing wheel;
and a fact: within a society information may converge at a node but never diverge in
a strict Nash K-network.

Corollary 2 (i) If no two societies in a cover K intersect in a singleton, a strict Nash
K-network is necessarily an all-encompassing wheel. (ii) Within a society, information
may converge at a node from another two, but never diverge in a strict Nash K-network.

Proof. (i) By Theorem 1, a strict Nash K-network is formed by wheels, and the
existence of two or more wheels means necessarily that some node is linked by two
di¤erent players. By the preceding proposition, such a node must be the unique node at
the intersection of the reaches of these two, or, equivalently, any two societies containing
this node and either of the other two must share only that node. Now if no two societies
in cover K intersect in a singleton this is not possible, thus only an all-encompassing
wheel can be a strict Nash K-network.
(ii) By the preceding proposition, no three nodes i; j; k s.t. gji = gki = 1 in a strict

Nash K-network g, can belong to the same society.
In Olaizola and Valenciano (2011) the characterization of strict Nash K-networks

for the two-way �ow model under the constraints imposed by a societal cover allows
an easy constructive proof of the existence of such networks. In contrast with this
result, the question of existence in the one-way �ow model is answered negatively by
the preceding consequences of the characterization and the following example.

Example 1: LetN = f1; 2; 3; 4; 5g and let the coverK = ff1; 4; 5g; f2; 4; 5g; f3; 4; 5gg.
The non existence of a strict Nash K-network for this cover can be derived indepen-
dently from Corollary 2 and from Proposition 3. Given that, as the reader can easily
check, no all-encompassing wheel is feasible for this cover non existence follows from
Corollary 2. But this conclusion also follows directly from Proposition 3: in order to
be connected, players 1; 2 and 3 must link to either 4 or 5, but then necessarily two of
them link to the same player and whoever they are their reaches share two players.

This negative result raises the question of conditions for a cover K under which
a strict Nash K-network does exist. In general, each particular cover is a case-study.
We now describe some simple �regular�covers for which the existence of strict Nash
K-networks is guaranteed.
Consider a linear societal cover of the form K = fAigi=1;2;::;m, where for all i =

1; 2; ::;m � 1; Ai \ Ai+1 6= ?, and in all other cases two societies do not intersect.
First consider the case where for all i = 1; 2; ::;m � 1; #(Ai \ Ai+1) > 1: In this
case the all-encompassing wheel is K-feasible and therefore strict Nash K-networks
exist (see Fig. 2 (a)). Moreover, in view of Corollary 2-i, this is the only possible
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architecture of a strict Nash K-network. Now consider the case where for some i;
#(Ai \ Ai+1) = 1. In this case the all-encompassing wheel is not feasible, but a
strict Nash K-network can be constructed by using wheels to connect nodes in any
subsequence of consecutive societies whose intersection contains more than one node.
Then these wheels interconnect by means of the nodes at those intersections that
contain a single node, thus forming a strict Nash K-network (see Fig. 2 (b)).
Consider a cover in wheel of the form K = fAigi=1;2;::;m s.t. for all i = 1; 2; ::;m�1;

Ai \Ai+1 6= ?, and A1 \Am 6= ?, and in all other cases two societies do not intersect.
For such covers the all-encompassing wheel is K-feasible and therefore strict Nash. Just
pickm nodes i1; ::; im, with ij 2 Aj\Aj+1, for i = 1; 2; ::;m�1; and im 2 A1\Am, then
starting at i1, connect all unconnected nodes within society Aj forming a path ij ! ij+1
till a wheel is completed (see Fig. 2 (c)). Thus, by Corollary 2-i, when all intersections
contain at least two nodes the all-encompassing wheel is the only architecture of a strict
Nash K-network; while when some intersection contains a single node, architectures
other than the all-encompassing wheel are also feasible for a strict Nash K-network
(see Fig. 2 (d)).
The societal core (Olaizola and Valenciano, 2011) of a cover K is the set of nodes

that belong to all societies, i.e., core(K) := \A2KA: Then the following conclusion can
be drawn. When the core of a cover K is not empty and contains at least as many
nodes as the number of societies in K, then the all-encompassing wheel is K-feasible
and therefore strict Nash. Just pick as many nodes in the core as there are societies in
the cover, say m, fi1; ::; img � core(K). Starting at i1 connect all unconnected nodes
within Ajn fij+2; ::; img forming a path ij ! ij+1 till a wheel is completed (see Fig. 2
(e)). Observe that this condition does not hold in Example 1, where no strict Nash
K-network exists, but note also that this su¢ cient condition is not necessary (see, e.g.,
Fig. 2 (f)).

4 Dynamics

We now apply Bala and Goyal�s (2000) dynamic model in this setting. Namely, starting
from any initial K-network g, in each period each player i with a positive probability
responds with a K-admissible best response to g�i (this includes any strategy that
yields the same payo¤ to i as the current one when no strategy can improve i�s payo¤),
or randomizes across them when there are more than one. Otherwise, player i exhibits
inertia, i.e., keeps his/her links unchanged. In this way, a Markov chain on the state
space of all K-networks is de�ned. Bala and Goyal prove that in their setting, i.e.,
for K = fNg, starting from any network, the dynamic process converges to a strict
Nash network with probability 1. In other words, the only absorbing sets are singletons
consisting of wheels.
Olaizola and Valenciano (2011) shows how Bala and Goyal�s dynamic model for the

two-way �ow model may fail to converge to a strict Nash K-network when a societal
cover constrains link-formation. This possibility leads to the introduction of the notion
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Figure 2: Strict Nash K-networks
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Figure 3: Example 2

of quasi strict Nash K-networks, constituents of the absorbing sets for such dynamics,
whose existence is proved. These quasi strict Nash K-networks are just minimally
connected K-networks which are �miscoordination-proof�, i.e., such that they cannot
be disconnected by best response dynamics, and such that when the dynamic reaches
one of them the payo¤s remain stable for all players in spite of everlasting oscillations.
The following example shows such a situation for the one-way �ow model:

Example 2: Let N = f1; 2; 3; 4; 5; 6g and let K be the cover K = ff1; 2g; f1; 3g;
f3; 5; 6g; f2; 3; 4; 6gg. Consider the K-network g such that g12 = g21 = g26 = g65 =
g53 = g34 = g42 = 1, and gij = 0 otherwise. Network g is represented in Figure 3. Given

the a¢ liation of player 1, his/her only best response consists of replacing link
 
12 by

 
13,

while no other player has a best response. In the network that results if 1 replaces link
 
12 by

 
13, player 1�s best response is to replace

 
13 by

 
12, and no other player has a best

response (for instance, player 5 without constraints could replace
 
53 by

 
54 or

 
51, but

these links are not admissible given 5�s a¢ liation). In fact, the best response dynamic
would oscillate between these two networks, with player 1 alternatively linking 2 and
3. Note that every player receives the same payo¤ in either of these networks.

One might expect a similar result here to the one obtained for the two-way �ow
model: convergence of the dynamic process to strict or quasi-strict Nash K-networks.
Once again another di¤erence with the two-way �ow model is encountered: in the one-
way �ow model it may be the case, as is for certain covers, that no miscoordination-
proof network exists. It can be checked that this is the case for Example 1: for this
societal cover, starting from any K-network, best response would keep oscillating like
a kaleidoscope, connecting and disconnecting the network and never reaching a strict
Nash or a quasi-strict Nash K-network, which means in particular that convergence
is not even guarantee in terms of payo¤s. With this general result about convergence
discarded, each societal cover is a case-study. Although the issue of convergence when
strict Nash K-networks exist remains open, we have established it for the tree types of
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cover for which we show the existence of strict Nash K-networks.

Proposition 4 Let K be a societal cover, if K is (i) linear or (ii) in wheel or (iii) its
core contains at least as many nodes as there are societies in K, then Bala and Goyal�s
best response dynamic model converges to a strict Nash K-network, with probability 1.

The proof consists of an adaptation of Bala and Goyal�s proof of their Theorem 3.1,
which requires all the complications that a societal cover entails to be overcome. It is
given in the Appendix and illustrates how these complications can, at least in these
cases, be circumvented.

5 Concluding remarks

Olaizola and Valenciano (2011) studies the impact of institutional constraints, as mod-
eled by a societal cover, on Bala and Goyal�s (2000) benchmark two-way �ow model.
This paper addresses a similar study for their other benchmark model: the one-way �ow
model. The table below summarizes the main results, stressing both the parallelisms
and the signi�cant di¤erences in the models in the context of link-formation constrained
by a societal cover. If center-sponsored stars as strict Nash networks generalize to ori-
ented trees (perhaps �grafted�when there are �hinge-players�, i.e., individuals who
are the only one at the intersection of the reaches of some other two) in the context
of K-networks, wheels must generalize to possibly interconnected wheels in this con-
text when there are such hinge-players. But, in contrast with the two-way �ow model,
in the one-way �ow model strict Nash K-networks may not exist. Finally, Bala and
Goyal�s dynamic model, which in the two-way �ow model never fails to converge to a
strict or quasi-strict Nash K-network, may in the one-way �ow model fail to converge
to a quasi-strict Nash K-network, thus failing to converge even in terms of payo¤s. In
short, the impact of introducing the constraint of a societal cover seems to be greater
on the results for the one-way �ow model than for the two-way �ow model.

K-network Two-way �ow model One-way �ow model
Nash = minimally connected = minimally connected
E¢ cient E¢ cient = Nash Nash not always e¢ cient

Strict Nash (S.N.) always exist may not exist
S. N. architectures oriented (grafted) trees (interconnected) wheel(s)
Hinge players necessary for grafted necessary for multiple wheels

Dynamics�convergence always to S.N./quasi-S.N. may not converge

Needless to say, if such di¢ culties arise when no friction is assumed in the �ow
of information through the network, one can only expect further di¢ culties with the
introduction of decay. In fact, in the presence of decay we have not been able to obtain
any useful results.
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Appendix

Proof of Proposition 4: (i) Consider �rst the case of a linear cover with two societies,
K = fA;Bg, whose intersection is non-empty. We prove that starting from any K-
network g there is a positive probability of transiting to a strict Nash K-network
(absorbing state in the Markov process) in �nite time. As there is a positive probability
at each period that all but one agent will exhibit inertia, it su¢ ces to see that starting
from any K-network there is a �nite sequence of players�best responses that leads to a
strict Nash K-network. To that end, take a player i1 in AnB, let him/her play a best
response and let g1 denote the resulting K-network where i1 observes at least all nodes
in A.
First step: Form a wheel containing all nodes in A.

Take a node i2 furthest away in A from i1 in g1 (i.e., the/a node in A for which the

length of the shortest path i2
g1! i1 is the greatest). This means that i1 observes all

nodes in A without using any of i2�s links, otherwise a node other than i2 would be

furthest away in A from i1. There is then a best response of i2 where
 
i2i1 is the only

link with a node in A (if i2 2 A \ B such a best response may include some other
links with nodes in BnA). Let i2 play that best response (or �play inertia� if it was
his/her current strategy 10), and let g2 denote the resulting K-network. Note that
in g2 node i1 still observes all nodes in A. Now we describe the induction step from
a current network gk and a sequence of nodes in A, i1; i2; ::; ik, such that each node
ir (r = 2; ::; k) supports with ir�1 the only link with nodes in A, and i1 observes all
nodes in A. Let ik+1 be the node furthest away in A from ik in gk. Again, this means
that ik+1 observes all nodes in A without using any of ik�s links. There is then a best
response of ik+1 in which his/her only link with a node in A is the link with ik, and i1
still observes all nodes in A. Repeat until fi0; i1; i2; ::; ikg = A: At this stage agent i1
observes all nodes in A [B and he/she is the only node in A with possibly more than
one link, then a best response of his/her is to form only one link with ik and delete all
others. At the end of this all nodes in A form a wheel and observe all nodes in A[B.
Second step: Form an �8�consisting of this wheel containing all nodes in A and

another one containing all nodes in BnA and one node in A \B.
Take a node j1 in A\B that is linked by a node in AnB (at least one must exist). Let
j2 be the node in BnA furthest away from j1. Let j2 play the best response consisting
of forming a single link with j1. By reiterating this process a sequence j1; j2; ::; jl is
formed where fj2; ::; jlg � BnA and each node jr (r = 2; ::; l) supports the only link
with jr�1, and j1 still observes all nodes in A [ B. Repeat until fj2; ::; jlg = BnA. At
this stage agent j1 is the only one with possibly more than one link with nodes in BnA
and a best response of his/her is to form a single link in BnA with jl and keep the
one with a node in AnB. At the end of this we have a wheel containing all nodes in
BnA and node j1. Therefore this wheel and the one formed in the previous step form
10In what follows we omit this clause as obvious when a player plays a best response.
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the desired �8�. If A \ B = fj1g the network obtained is a strict Nash K-network,
otherwise:
Third step: We show that a sequence of best responses leads to two wheels, one

containing all nodes in A, the other containing all nodes in B and both sharing a
sequence of links containing all those in A \B.
Remember that j1 was followed (i.e., linked) by a node in AnB. Let ir be the �rst
node after j1 in the sequence in A \ B, and let ir0 be the �rst node after ir in this
sequence that is followed (i.e., linked) by a node in AnB. Now we describe a sequence
of best responses: �rst, j2 deletes his/her link with j1 and links with ir0; second, the
player in AnB that links ir0 deletes this link and links with the node in AnB that is
linked by ir; third, let ir delete his/her link and link j1; fourth, let the player linking
with j1 delete his/her link and link with ir0. After these four best response movements,
the reader may check that we have two wheels, one containing all nodes in BnA, the
other containing all those in A, and both sharing the sequence j1; ir; ::; ir0, where each
of these nodes links with the preceding one. If this sequence contains all players in
A \ B, we have the desired pair of wheels, otherwise, repeat these four steps starting
at ir0 instead of at j1. By reiterating this process we obtain a pair of wheels as desired.
Fourth step: Form an all-encompassing wheel.

Relabel by k1; ::; km, the sequence consisting of all nodes in A\B, where each of these
nodes links with the preceding one. Again we give a sequence of best responses. Let j
be the player in BnA who links km. Let j replace his/her link with km by a link with
k1. We again have an �8�in which two wheels interconnect at k1, but now all nodes in
A \ B are consecutively linked. This allows the following sequence of best responses.
Let k2 replace his/her link with k1 by a link with the player, say j0, in BnA linked by
k1. Then k1 can delete his/her link with j0. Now k3 replaces his/her link with k2 by a
link with j0, and subsequently k2 can delete his/her link with j0. Reiterate this till km
replaces the link with km�1 by a link with j0, and km�1 deletes his/her link with j0. At
this stage an all-encompassing wheel is formed.
Now consider a linear societal cover of the form K = fAigi=1;2;::;m, where for all

i = 1; 2; ::;m� 1; Ai \ Ai+1 6= ?, and in all other cases two societies do not intersect.
Then start at A1, take a node in A1nA2 and form a wheel containing all nodes in A1
proceeding as in the �rst step. Then, take a node in A1 \ A2 that is linked by a node
in A1nA2 and, proceeding as in the second step, form an �8�consisting of the wheel
containing all nodes in A1 and another containing all nodes in A2nA1 and the node
chosen in A1 \ A2. Then, following steps 3 and 4 (unless there is a unique node in
A1 \A2), form a wheel containing all nodes in A1 [A2. At this stage all nodes in this
wheel observe at least all nodes in A1 [ A2 [ A3. Iterate this process, now taking a
node in A2 \ A3, etc., until an all-encompassing wheel is completed or a sequence of
wheels (in this case contacting at isolated nodes at the intersection of two consecutive
societies) forming a strict Nash K-network.
(ii) Consider a cover in wheel of the formK = fAigi=1;2;::;m s.t. for all i = 1; 2; ::;m�

1; Ai\Ai+1 6= ?, and A1\Am 6= ?, and in all other cases two societies do not intersect.
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Now proceed as in the linear case starting at any society, say Ar. Take a player i1 in
ArnAr�1. Let him/her play a best response. Now i1 observes at least all nodes in Ar.
Form a sequence of nodes in Ar as described inductively. Let i1; i2; ::; ik (k � 1) be the
sequence formed up to step k. Let ik+1 be the node furthest away in Ar from ik and let
ik+1 play a best response in which his/her only link in Ar is the link with ik, if such a
best response exists11, and reiterate this step as far as such a best response exists until a
wheel containing all nodes in Ar is formed. Otherwise (i.e., if at some point before the
wheel is formed ik+1 has no such best response), let him/her play any best response.
This best response should include a link with a node, say i01, either in Ar�1nAr or
Ar+1nAr. Now recommence a sequence starting at i01 from the current network. It can
be seen that by reiterating this process a wheel will be formed including all nodes in
a society12, unless a strict Nash K-network is formed in the process. Without loss of
generality assume that the wheel has been formed in A1. Now proceed as in step 2,
by picking a node j1 in A1 \ A2 linked by a node in A1nA2 and forming a sequence
of nodes in A2nA1 as described inductively. Let j1; j2; ::; jk (k � 1) be the sequence
formed up to step k. Let jk+1 be the node furthest away in A2nA1 from jk in the
current network and let jk+1 play a best response where the only link that he/she has
in A2 is the link with jk, if such a best response exists, and reiterate this step as far
as such a best response exists until a wheel containing all nodes in A2nA1 and node
j1 is formed. Otherwise, step 2 must be recommenced by picking a node in A1 \ Am
linked by a node in A1nAm until a wheel containing all nodes in AmnA1 and the chosen
one in A1 \ Am is formed. It can be checked that now he formation of this wheel
cannot be hindered by the non-existence of the desired best response. Now proceed
as in the linear case (steps 3 and 4 apply unchanged) up to the completion of a wheel
or a sequence of wheels (in this case contacting at isolated nodes at the intersection
of two consecutive societies) including all nodes in all societies but one, say Ar. Note
that now all nodes except possibly some in Arn(Ar+1 [ Ar�1) observe all nodes in N .
Now proceed once more as in step 2, by picking a node in Ar�1 \ Ar linked by a node
in Ar�1 and forming a wheel with all nodes in Arn(Ar+1 [Ar�1) and the chosen one in
Ar�1\Ar. Then, unless Ar�1\Ar is a singleton, apply steps 3 ans 4 to merge this wheel
with the one including all nodes in Ar�1. At this stage, some nodes at Ar \Ar+1 may
support some unnecessary links with nodes in ArnAr+1. Finally, let these players play
best responses and delete these links, then a strict Nash K-network consisting of either
an all-encompassing wheel or a sequence of wheels containing all nodes is formed.
(iii) Finally, if the core of a societal cover K contains at least as many nodes as there

are societies in K, it is not di¢ cult to adapt the proof, �expanding�an initial wheel
containing all nodes in a society. A su¢ cient number of nodes within the core ensures
that all such expansions are feasible and necessarily lead to an all-encompassing wheel.
�
11By contrast with the linear case, this is now not guaranteed.
12In the worst case, after the attempt in m� 1 societies fails.
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